Melov Lab

Simon Melov, PhD


Identifying molecular hallmarks of aging to guide the development of anti-aging therapies.

Lab focus

Why do we age? Despite more than 30 years of research in the genetics of aging and a much longer history interrogating the process more generally, we still don’t know the answer to this basic question. There has been some success in manipulating the lifespan of simple laboratory organisms and, to a lesser extent, mammalian systems such as the laboratory mouse. However, true insight into the mechanisms which modulate longevity elude us at present. Otherwise we would be able to make our favorite model systems with lifespans of a few weeks live for not just a month or two but potentially decades, all while remaining youthful and healthy.

The Melov lab takes a multidisciplinary geroscience approach to better understand the core mechanisms that drive aging. This includes a heavy reliance on multiple model systems, including invertebrate models, mammalian models (the laboratory mouse), human cell lines and tissues, and state-of-the-art genomic technologies that rely on heavy computational methods to better understand how cells and tissues change with age and/or pharmacological intervention.

Why it matters

We must constantly question our own models and data to gain genuine insights into the mechanisms that drive the degenerative changes arising from intrinsic aging processes. A key philosophy of the lab is that it is not enough to enhance healthspan through simple dietary or lifestyle interventions. We argue that such approaches merely fine-tune an organism to survive in its current environment. While worthwhile for generally improving health, such paradigms will do little to uncover the key drivers that limit lifespan. In contrast, we hope to develop novel multidisciplinary approaches in geroscience to develop therapeutics that are effective in reducing or ameliorating the cellular damage arising from endogenous aging processes. Such an approach will pay massive dividends to improve the health and longevity of a rapidly aging world.

Efforts to extend healthspan by delaying the aging process are moving from ‘impossible’ to ‘inevitable.’ The Buck Institute is uniquely positioned to play a pivotal role in this new area of medicine.

Simon Melov, PhD

The Melov lab is pleased to acknowledge the generous support of the following major funders:

Dr. Melov was the third faculty hire at the Buck Institute when it opened its doors in 1999 and currently serves as co-director of the Institute’s Mouse Phenotyping and Single-Cell Biology cores. An Australian, Dr. Melov obtained his bachelor’s degree in human genetics from the University of New South Wales in Sydney, Australia, and then completed his PhD in biochemistry at Imperial College London in the United Kingdom. He carried out postdoctoral studies on the genetics of aging at the University of Colorado, Boulder, and on mitochondrial disease at Emory University in the Department of Molecular Medicine. He also holds adjunct appointments at the Andrus College of Gerontology, University of Southern California, and Dominican University of California in San Rafael.

Dr. Melov is facile in multiple aspects of aging biology, which is now termed geroscience. He has published more than 100 papers and has twice received the Glenn Award for Research in Biological Mechanisms of Aging. He was the first faculty member at the Buck Institute to receive a senior scholarship from the Ellison Medical Foundation. He was one of the founding editors of the highly respected journal Aging Cell and served as the inaugural and founding chair of the Gordon Research Conference on Oxidative Stress and Disease.

Dr. Melov has extensive experience in working with biotech and pharma, having received numerous competitive awards from this sector and accumulated broad experience serving as a consultant. He has also served on more than 30 study sections for the National Institutes of Health.

  • Josef Byrne  Buck-USC Graduate Student

    Josef earned his B.S. in Chemical Engineering from Cornell University in 2018. From 2018 to 2022, he worked as a Scientist in Vaccine Process Development at Merck contributing to the research and development of novel vaccine candidates. Josef entered the Buck-USC Biology of Aging program in 2022 and joined the Melov Lab in 2023. His current research focuses on muscle aging.

  • Asia Davis-Castillo  Research Associate

    Asia Davis-Castillo completed her B.S. in biology with a concentration in human physiology at San Francisco State University, and her M.S. in biology at Dominican University of California. She is currently working on the BIT project, which involves multiple types of interventions, focusing on in vivo mouse work. In her spare time, she enjoys reading, hiking, baking, and spending time with her cats.

  • Sofiya Galkina  Staff Scientist

    Sofiya Galkina is an MD from Donetsk, Ukraine. Before joining the Buck she worked at Gladstone Institute and UCSF's Department of Experimental Medicine. She was focusing on preclinical HIV studies and antiviral drug research, using a humanized mouse model. Her current role is to assist scientists with all kinds of tools available in the Mouse Phenotyping Core.

  • Elena Goncharova  Scientist

    Elena Goncharova received her MS in biochemistry from Rostov-on-Don, Russia. Before joining the Buck Institute she worked in Myer Clinical Research as a Consulting Scientist. She was focusing on preclinical breast cancer studies using new treatment modality. Her current research is in relation to senescent cells.

  • Nicolas Martin, PhD  Postdoctoral Fellow

    Nicolas Martin is a comparative biologist with a background on lipidomics and mitochondrial metabolism. Nicolas completed his Ph.D. at the University of Wollongong, NSW in 2019. His doctoral research focused on the influence of dietary lipids on lifespan of female honey bees. Over the last few years, Nicolas' research has been targeting to experimentally test mechanisms that could explain the difference in lifespan between short-lived workers and long-lived queens. Workers live for 4-6 weeks while queens can live for years! Throughout his post-doctoral research at the Buck, Nicolas will investigate epigenetic regulations in female honey bees. We will use state of the art technology to explore how female honey bees can regulate the same genome to produce two distinct phenotypes. The honey bee represents a unique system that can provide a conceptual framework for understanding how environmental changes could influence epigenomic modifications and how those modifications affect transcriptional modulation.

  • Tommy Tran  Research Associate

    Tommy completed his B.S in nutrition science with a minor in exercise biology at UC Davis in 2018. He worked under Keith Baar from 2018-2021 studying how nutrition, exercise and aging affect musculoskeletal function. His most recent work from UC Davis examined how the ketogenic diet mimics exercise and extends lifespan. His current work focuses on using single-cell technology to create an atlas of senescent bio-markers. In his free time he is a fitness enthusiast that likes to apply the science as a practitioner and test subject.

  • Yuki Tsumori  Visiting Scientist

  • Lauren Wimer  Project Manager

    Lauren is a recent Master's graduate from Dominican University. She performed her thesis work through the Kapahi Lab, studying advanced glycation end-products and their role in diabetic complications. Lauren now continues studying methylglyoxal effects on feeding behavior and metabolic disorders in mammalian models as a Research Associate in the Kapahi Lab.

Mary Redwine
Administrative Lab Coordinator
Phone: 415-209-2237
Selected Publications
  • Melov, S. (2016 Apr 29). Geroscience approaches to increase healthspan and slow aging. F1000Res, 5(F1000 Faculty Rev), 785. DOI: 10.12688/f1000research.7583.1. PubMed PMID: 27158475.
  • Brand, M. D., Goncalves, R. L., Orr, A. L., Vargas, L., Gerencser, A. A., Borch Jensen, M., Wang, Y. T., Melov, S., Turk, C. N., Matzen, J. T., Dardov, V. J., Petrassi, H. M., Meeusen, S. L., Perevoshchikova, I. V., Jasper, H., Brookes, P. S., Ainscow, E. K. (2016 Oct 11). Suppressors of superoxide-H2O2 production at site IQ of mitochondrial complex I protect against stem cell hyperplasia and ischemia-reperfusion injury. Cell Metab, 24(4), 582–592. DOI: 10.1016/j.cmet.2016.08.012. PubMed PMID: 27667666.
  • Fontana, L., Kennedy, B. K., Longo, V. D., Seals, D., Melov, S. (2014 Jul 24). Medical research: Treat ageing. Nature, 511(7510), 405–7. DOI: 10.1038/511405a. PubMed PMID: 25056047.
  • Zykovich, A., Hubbard, A., Flynn, J. M., Tarnopolsky, M., Fraga, M. F., Kerksick, C., Ogborn, D., MacNeil, L., Mooney, S. D., Melov, S. (2014 Apr). Genome-wide DNA methylation changes with age in disease-free human skeletal muscle. Aging Cell, 13(2), 360–6. DOI: 10.1111/acel.12180. PubMed PMID: 24304487.
  • Flynn, J. M., O’Leary, M. N., Zambataro, C. A., Academia, E. C., Presley, M. P., Garrett, B. J., Zykovich, A., Mooney, S. D., Strong, R., Rosen, C. J., Kapahi, P., Nelson, M. D., Kennedy, B. K., Melov, S. (2013 Oct). Late-life rapamycin treatment reverses age-related heart dysfunction. Aging Cell, 12(5), 851–62. DOI: 10.1111/acel.12109. PubMed PMID: 23734717.
  • Kirkwood, T. B., Melov, S. (2011 Sep 27). On the programmed/non-programmed nature of ageing within the life history. Curr Biol, 21(18), R701–7. DOI: 10.1016/j.cub.2011.07.020. PubMed PMID: 21959160.
  • Flynn, J. M., Choi, S. W., Day, N. U., Gerencser, A. A., Hubbard, A., Melov, S. (2011 Apr 1). Impaired spare respiratory capacity in cortical synaptosomes from Sod2 null mice. Free Radic Biol Med, 50(7), 866–73. DOI: 10.1016/j.freeradbiomed.2010.12.030. PubMed PMID: 21215798.

The debate over whether aging is a disease rages on

Exercise: A gateway drug for living longer (2019 Levy Family Community Seminar)

Who Wants to Live Forever, the Wisdom of Aging.

What Happens When We All Live to 100?

Buck Institute study shows anti-aging drug improves function of heart in mice

Lifespan-extending drug given late in life reverses age-related heart disease in mice: Rapamycin

Determining Physiological Age - Biomarker Discovery May Be The Key

Exercise Reverses Aging In Human Skeletal Muscle

Exercise Reverses Aging In Human Skeletal Muscle

The Age of Aging

Issue 01 – Living forever

A lease on life

Experimental Drug Is Found to Triple Life Span of Part of Worm Test Group

View all

Support the Buck

We rely on donations to support the science that we believe will add years to people's lifespan and decades to their healthspan.