Kennedy Lab

Brian K. Kennedy, PhD


Moving research in aging from simple organisms into mammals to improve human health.

Lab focus

The Kennedy lab uses multiple animal models combined with human studies to understand the mechanisms driving biological aging and to develop interventions designed to extend healthspan and lifespan. Murine disease models and stem cell culture studies are also employed to define the underlying links between aging and the onset of chronic conditions.

In yeast, large-scale genetic approaches are used to understand aging holistically in a single organism. In mammals, the lab focuses on validating conserved pathways identified using invertebrates and dissecting how those pathways interface in specific tissues with mechanisms driving aging. Finally, the lab works with drugs and small molecules that modulate aging, trying to understand their mechanisms of action and utility for human studies.

Why it matters

The dominant mode of health care is centered on treating diseases. When it comes to the chronic diseases of aging, which account for most of global health care costs, this strategy has yielded only incremental progress and often resulted in expensive non-curative therapies. We believe that by developing interventions that slow aging, it will be possible to extend human healthspan, delaying the onset of multiple chronic diseases and maintaining healthy function later in life.

Our work in multiple animal models shows that the processes driving aging are conserved among species. Studying these common pathways are enabling the development of therapies that would slow the aging process – forestalling chronic disease.

Brian Kennedy, PhD

The Kennedy lab is pleased to acknowledge the generous support of the following major funders:

Dr. Kennedy earned his PhD from the Massachusetts Institute of Technology and is well known for his work during his graduate studies with Leonard Guarente, PhD, which led to the discovery that sirtuins (SIR2) modulate aging. He performed postdoctoral studies at the MGH Cancer Center associated with Harvard Medical School. From 2001 to 2010, he held a faculty position at the University of Washington.

He was the president and CEO of the Buck Institute from 2010 to 2016 and remains a professor at the Institute. In addition, he is a visiting professor in medicine and healthy aging at National University Singapore, an adjunct professor in the Davis School of Gerontology at the University of Southern California, and an affiliate professor in the Department of Biochemistry at the University of Washington.

Dr. Kennedy has published more than 160 papers in prestigious journals, including Cell, Science, and Nature. He serves as co-editor-in-chief of Aging Cell and is on the editorial board of a number of other scientific journals. He also routinely provides lectures to the public and is active in writing opinion pieces on aging in public media outlets around the world. More recently, Dr. Kennedy has become active in the biotechnology and pharmaceutical arena, serving as a consultant for several companies. He is currently on the board of directors of three companies, including acting as board chair of Mt. Tam Pharmaceuticals. He has also completed research projects for several biotechnology companies.

  • Yuehmei Hsu, PhD  Postdoctoral Research Fellow

    Yuehmei Hsu got her PhD in basic medical science in Taiwan and joined the Kennedy lab in 2015. Her major work in the Kennedy lab is focused on studying the effect of different compounds on mouse disease models, including maple syrup urine disease and Hutchinson-Gilford progeria syndrome. She loves to read books, make new friends, and cook for her friends and family. She also enjoys spending the weekend with her two lovely daughters exploring the Bay Area.

  • Chen-Yu Liao, PhD  Postdoctoral Research Fellow

    Chen-Yu is a postdoctoral research fellow in the Kennedy lab. He got his PhD in physiology from the Barshop Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio. Chen-Yu has studied the genetic variation in the murine lifespan response to dietary restriction. Chen-Yu continues his training in the field of aging research at the Buck Institute. His main focus is on the molecular mechanisms underlying the aging process in mice.

Ricki Singer
Administrative Lab Coordinator
Phone: 415-209-2086
Selected Publications
  • Liao, C. Y., Anderson, S. S., Chicoine, N. H., Mayfield, J. R., Academia, E. C., Wilson, J. A., Pongkietisak, C., Thompson, M. A., Lagmay, E. P., Miller, D. M., Hsu, Y. M., McCormick, M. A., O’Leary, M. N., Kennedy, B. K. (2016 Dec 6). Rapamycin reverses metabolic deficits in lamin A/C-deficient mice. Cell Rep, 17(10), 2542–2552. PMID: 27926859.
  • Tsai, S., Rodriguez, A. A., Dastidar, S. G., Del Greco, E., Carr, K. L., Sitzmann, J. M., Academia, E. C., Viray, C. M., Martinez, L. L., Kaplowitz, B. S., Ashe, T. D., La Spada, A., Kennedy, B. K. (2016 Aug 16). Increased 4E-BP1 expression protects against diet-induced obesity and insulin resistance in male mice. Cell Rep, 16(7), 1903–1914. PMID: 27498874.
  • McCormick, M. A., Kennedy, B. K., et al. (2015 Nov 3). A comprehensive analysis of replicative lifespan in 4,698 single-gene deletion strains uncovers novel mechanisms of aging. Cell Metab, 22(5), 895–906. PMID: 26456335.
  • Schreiber, K. H., Ortiz, D., Academia, E. C., Anies, A. C., Liao, C. Y., Kennedy, B. K. (2015). Rapamycin-mediated mTORC2 inhibition is determined by the relative expression of FK506 binding proteins. Aging Cell, 14, 265–273. PMID: 25652038.
  • He, C., Tsuchiyama, S. K., Nguyen, Q. T., Plyusnina, E. N., Terrill, S. R., Sahibzada, S., Patel, B., Faulkner, A. R., Shaposhnikov, M. V., Tian, R., Tsuchiya, M., Kaeberlein, M., Moskalev, A. A., Kennedy, B. K., Polymenis, M. (2014 Dec 18). Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast through inhibition of tryptophan import. PLoS Genet, E1004860. PMID: 25521617.
  • Kennedy, B. K., Berger, S. L., Brunet, A., Campisi, J., Cuervo, A. M., Epel, E. S., Franceschi, C., Lithgow, G. J., Morimoto, R. I., Pessin, J. E., Rando, T. A., Richardson, A., Schadt, E. E., Wyss-Coray, T., Sierra, F. (2014). Geroscience: Linking aging to chronic disease. Cell, 159, 709–713. PMID: 25417146.
  • Ramos, F., Chen, S. C., Garelick, M. G., Dai, D. F., Liao, C. Y., Schreiber, K. H., MacKay, V. L., An, E. H., Strong, R., Ladiges, W. C., Kaeberlein, M., Kennedy, B. K. (2012). Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function and extends survival. Transl Med, 4, 144ra103. PMID: 22837538.
  • Smith, E. D., Tsuchiya, M., Fox, L. A., Dang, N., Hu, D., Kerr, E. O., Johnston, E. D., Tchao, B. N., Pak, D. N., Welton, K. L., Promislow, D. E. L., Thomas, J. H., Kaeberlein, M., Kennedy, B. K. (2008). Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Res, 18, 564–570.
  • Steffen, K. K., MacKay, V. L., Kerr, E. O., Tsuchiya, M., Hu, D., Fox, L. A., Dang, N., Johnston, E. D., Oakes, J. A., Tchao, B. N., Pak, D. N., Fields, S., Kennedy, B. K., Kaeberlein, M. (2008 Apr 18). Yeast lifespan extension by depletion of 60S ribosomal subunits is mediated by Gcn4. Cell, 133(2), 292–302.
  • Kaeberlein, M., Powers, R. W. III, Steffen, K. K., Westman, E. A., Hu, D., Dang, N., Kerr, E. O., Kirkland, K. T., Fields, S., Kennedy, B. K. (2005 Nov 18). Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science, 310(5751), 1193–1196.
  • Kennedy, B. K., Austriaco, N. R. Jr, Zhang, J., Guarente, L. (1995 Feb 10). Mutation in the silencing gene SIR4 can delay aging in Saccharomyces cerevisiae. Cell, 80(3), 485–496.

Support the Buck

We rely on donations to support the science that we believe will add years to people's lifespan and decades to their healthspan.